Characterization of ZnO Nanobelt-Based Gas Sensor for H2, NO2, and Hydrocarbon Sensing
نویسندگان
چکیده
A conductometric H2, NO2, and hydrocarbon gas sensor based on single-crystalline zinc oxide (ZnO) nanobelts has been developed. The nanobelt sensitive layer was deposited using a radio frequency (RF) magnetron sputterer. The microcharacterization study reveals that the nanobelts have a single crystal hexagonal structure with average thickness and width of about 10 and 50 nm, respectively. The sensor was exposed to H2, NO2 and propene gases at operating temperatures between 150 C and 450 C. The study showed that optimum operating temperatures for the sensor are in the range of 300 C–400 C for H2, 300 C–350 C forNO2, and 350 C–420 C for propene sensing.
منابع مشابه
H2 and NO2 Gas Sensors with ZnO Nanobelt Layer on 36° LiTaO3 and 64° LiNbO3 SAW Transducers
Single crystal nanobelts of ZnO were synthesized and deposited onto 36° YX LiTaO3 and 64° YX LiNbO3 Surface Acoustic Wave (SAW) devices for gas sensing applications. Sensor response, defined as the change in resonant frequency, was measured for H2 and NO2 between 20 and 200°C. Measured sensor responses were 3.5 kHz towards 10 ppm NO2 for a 64° LiNbO3 SAW transducer operating at 160°C and 3 kHz ...
متن کاملSynthesis, characterization, and gas sensing properties of In-doped ZnO nanopowders
Indium (1at %) doped ZnO and ZnO nanoparticles have been synthesized via sol gel method. The structural characters of the synthesized nanoparticles have been studied by X-ray diffraction pattern (XRD), scanning electron microscopy (SEM) and energy-dispersiveX-ray spectroscopy (EDX). From synthesized nanopowders a tablet was prepared by using the isostatic pressing and then sintered at ...
متن کاملTiO2 based surface acoustic wave gas sensor with modified electrode dimensions for enhanced H2 sensing application
The design and optimization of nanostructure-based surface acoustic wave (SAW) gas sensor is analyzed based on TiO2 sensing layer and modified electrode dimensions. The sensitivity of the gas sensor depends upon the type of sensing layer used and active surface area obtained by varying the aspect ratio. The performance of the sensor is observed from 0.1ppm to 100ppm concentration of ...
متن کاملThe Study of Pure and Mn Doped ZnO Nanocrystals for Gas-sensing Applications
ZnO and ZnO: Mn nanocrystals were synthesized via reverse micelle method. The structural properties of nanocrystals were investigated by XRD. The XRD results indicated that the synthesized nanocrystals had a pure wurtzite (hexagonal phase) structure. Resistive gas sensors were fabricated by providing ohmic contacts on the tablet obtained from compressed nanocrystals powder and the installation ...
متن کاملThe Study of Pure and Mn Doped ZnO Nanocrystals for Gas-sensing Applications
ZnO and ZnO: Mn nanocrystals were synthesized via reverse micelle method. The structural properties of nanocrystals were investigated by XRD. The XRD results indicated that the synthesized nanocrystals had a pure wurtzite (hexagonal phase) structure. Resistive gas sensors were fabricated by providing ohmic contacts on the tablet obtained from compressed nanocrystals powder and the installation ...
متن کامل